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ABSTRACT

511 pavida was observed with the technique.of speckle
interferometry at Steward Observatory's 2.3m telescope on May 3,
1982. Based on 5 ten minute observatigns, its dimensions were
found to be (465 + 33) x (358 + 39) x (258 + 52) km. Such a

shape falls close to an equilibrium figure of a "rubble pile,"
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esting a density of 1.4 + 0.4 gm/cm>. Simultaneous with the
determination of the size and shape of Davida, we find its north
pole to lie within 26° of RA = 19Pg8™, pec = 15° (A= 291 ©, p =
+37°9).

We derive and apply to Davida a new simultaneous amplitude
magnitude (SAM) aspect method for finding, from photometric data
only, axial ratios and rotational pole coordinates. We also
employ various weightings in a linear form of the amplitude
aspect relation to find axial ratios and a poie. Precise albedos
follow from speckle and photometry, but they depend on the form
of the phase function (the Gehrels and Tedesco or Lumme and
Bowell treatments) and the photometric method used to find the
pole and axial ratios.

An alternative interpretation of the photometric data which
cannot be excluded, is that father than suggesting a change to
the axial ratios found from speckle observations, the photometry
could indicate albedo structure over the surface of Davida. The
precision of our present autocorrelation/power spectrum result
does not force a choice between a uniform albedo or an albedo'

gradient. Image reconstruction techniques presently under




development may, however, permit such discriminations.




Introduction

In order to find its triaxial dimensions and the direction
of its angular momentum vector (its spin axis) we have obtained

five speckle interferometric observations of the sixth largest

(Zellner, 1979) minor planet, 511 Davida. Zappala and Knezevic
(1985) have applied the amplitude-magnitude-aspect relationship
(zappala et al. 1983; Zappala and Knezevic 1984) to lightcurves
of Davida extending back to 1952. We, too, derive and apply a
new simultaneous amplitude-magnitude-—-aspect, and a weighted
amplitude-aspect, method to the photometric data of Davida.
These photometric methods lead to an independent check of the
location of Davida's spin axis and its axial ratios és found
through speckle interferometry, which, being a high angular
resolution technique, follows the changing projected size, shape,
and orientation of the asteroid to derive its pole and
dimensions.

For image modelling purposes, an asteroid is assumed to be a
triaxial ellipsoid rotating about its shortest axis (a>b>c),
smooth (no large craters, mountains, etc.), featureless (no
albedo variations), and uniformly bright (scatters
geometrically). Such an ellipsoidal model asteroid projects as
an apparent ellipse of uniform brightness on the plane of the
Earth's sky. The two-dimensional image autocorrelation fuqction
of a uniformly bright ellipse has the same shape and orientation
(but twice the size) as the ellipse itself. The corresponding

image power spectrum also has the 'same elliptical shape, but




appears rotated 90° because of the reciprocal relation between
image extent and spatial frequency. The projected figure of the
real asteroid on the plane of the Earth's sky is thus
characterized by the fit of an elliptical model to the observed
image autocorrelation function or image power spectrum data.
This yields the observed major axis diménsion (2}, minor axis
dimension (p), and position angle of the major axis (¥) for a
particular time in the asteroid's rotational cycle. The
equations relating the observed elliptical parameters (N,F,?) for
a series of rotational phase angles,‘#, to the three axes
dimensions and pole direction of the triaxial ellipsoid are given
by Drummond et al. (1985a). Thus, a non-linear least squares
routine is applied to a se:ies of (“,ﬁ,kﬁ and yields
simultaneously six parameters: ‘the three axes dimensions, two
Euler angles (9,the sub-Earth point latitude, and%b, the zero
point in the rotational cycle) and the obliquity 90, the
projected angle between the asteroid's north pole and the

ecliptic north pole; see Appendix I of Drummond et al. 1985a).




Observations and Results

On May 3, 1982, with the 2.3m telescope of Steward
Observatory and the speckle camera and equipment described by
Hege et al. (1982), five ten-minute speckle observations of

Davida were made, each observation being preceded by an
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observation of one nearby star, and fcllowed by another
observation of a second star. The co-added power spectra of
Davida for each ten minutes were divided by the power spectra of
the flanking stars in order to remove the telescope modulation

transfer function and the seeing (Hege et al. 1982; Drummond et

al. 1985a,b). The aspect data for Davida on May 3, 1982, is

given in Table I.

Table II gives the six parameter fit to the fifteen
equations of condition (five«'s, fivefS‘s, and five ¥'s). As
for most non-linear least squares routines, our program (adopted
from Jefferys 1980, 1981l) linearizes about the residuals. The
errors for the parameters can then be computed directly during
the solution of the egquations of condition. For 433 Eros
(Drummond et al. 1985a) and 532 Herculina (Drummond et al.
1985b), the errors so computed appear to be reasonable. However
for Davida they are unreasonably large, especially for the
smallest dimension, c, because at certain orientations of the

asteroid, the residual space (or'X~squared hyperspace) is quite

convoluted and even discontinuous. As explained by Drummond et

al. (1985a), at certain configurations the asteroid will appear




to suddenly reverse directions as it rotates. Near this
configuration a small change in any of the six parameters during
the iterations will result in a large change in the predicted
position angles, and thus in the residuals. The errors computed
in such a situation are not realistic. For instance, the minimum
in theiﬁ-squared hyperspace results in the solution that appears
in Table 11, but the formal error for c of +306 km implies that
our data allows c to be negative.

Since this unphysical possibility is caused by the warped
residual space, we compute the errors, instead, by considering
the five solution sets of observations taken four at a time. For
each of the six parameters we find the mean gp) and standard
deviation (§) of the five sets, and calculate the error (@) of p
(the parameter solution given in Table II) by¢52 = (p;a)z + gz.
(For two of the five sets only a 5 parameter fit [b=c] converged

to a solution.)

.
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Table III gives the 5 parameter solution, the prolate
spheroid case (b=c) using all five observations. Since this
biaxial ellipsoid never reverses direction of rotation, the X-
squared hyperspace is not warped, and there are no problems
finding the solutions or computing the errors. However, the fit
to K, /5, and‘X(none illustrated), are much worse than the
triaxial case, and, furthermore, the triaxial solution does not
allow a biaxial situation (b - &) > (c + 0. ). Therefore, unlike
our treatment of Eros and Herculina, we do not consi@er a
weighted average between the biaxial and triaxial solutions, and

only use the latter (Table II), rejecting the biaxial solution




(Table III).

In Figure 1 we show the measured «('s (upper filled circles)
ande‘s (lower open circles), as a function of rotational phase.
The upper line is the predicted’'cl from the solution in Table II,
and the lower line is the predicted/3. Figure 2 shows the
measured (circles) and predicted (line) ¥'s for our triaxial
solution of Table II. To illustrate the problem caused by the
weird shape of the residual space, Figure 3 results from using
the adoupted scluticon of Table II, but changing the latitude of
the sub-Earth point, @, by 1° from -39.6 to ~466. 1n Figure 2
cos2 6 > (az-bz)/(az-cz) and the condition for rotation reversal
of the projected ellipse is satisfied. 1In Figure 3 cos? @ < (al-

b2)/(a2-c2) and the ellipse does not reverse directions.
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Davida as a Rubble Pile

A particular sub-set of triaxial ellipsoid figures is
allowed if a body is in hydrostatic as well as gravitational
equilibrium. The shape of such objects is maintained by gravity
only since they have no internal strength (Chandrasekhar 1969;
Weidenschilling 1981). If an asteroid suffers a catastrophic
collision it is possible that reaccumulation could occur among
the ejecta with relative velocities less than the escape velocity
of_the largest remnant (Zappala et al. 1984). Such rubble piles
(Davis et al. 1979) would form a particular triaxial ellipsoid
equilibrium figure that is a function only of its angular
momentum.

Within the errors, our determination of the shape of Davida
suggests the possibility that it could be such an equilibrium
figure, and since we know its volume and rotation period, it is
possible to find its mean density as was suggested by Farinella
et al. (198l). Following their lead, we note that for the
equilibrium figure of 465x377x244, which falls within the errors
of our.observations, and has the same long dimension and volume
as the solution from Table II, a rotational period of 5.1297
hours (Zappala and Knezevic, 1985) leads to a mean density of 1.4
+ 0.4 gm/cm3. This density is rather low and could mean .that

there is substantial void space within the asteroid, or for that

matter, may suggest that Davida is not a rubble pile after all.




Photometry

When the solar phase angle (W) is less than substantial,
there is a two-fold ambiguity in determining the pole direction
from the changing size, shape, and orientation of the projected
ellipses. However, this &, /-G ambiguity (Drummond et al. 1985a)
which is manifest as a choice between two obliquities, and
therefore two poles, can easily be resolved by considering
lightcurve data. In Table TV we compare the observed lightcurve
amplitudes (taken from Zappala and Knezevic, 1985 and from Vesely
and Taylor, 1985) to our predicted amplitudes using pole 1 in
Table II. The RMS deviation from the observed amplitudes is .04
mag, whereas with pole 2 it was found to be .18 mag. The choice
between the two pole solutions is obvious.

Next we derive and apply yet another magnitude-amplitude-
aspect relation. Several versions of the principle are currently
used, e.g., Zappala's amplitude-magnitude (AM; Zappala et al.
1983, Zzappala and Knezevic 1984), or Tedesco and Taylor's (1985)
magnitude-amplitude-shape-aspect (MASA), relationships. To
distinguish our new technique we dub our method the simultaneous
amplitude-magnitude (SAM) relation. Adopting the assumptions
from the introduction of this paper, the square of the amplitude
(converted from magnitudes to a linear scale) of an asteroid's
lightcurve is given as the ratio of maximum to minimum projected
area squared

2

R = (A + B cos20)/(A + C cos?®) )

where A = a2b2, B = a202 - a2b2, and C = b2c2 ~ a2 2 The

latitude of the sub Earth point, 6, comes from
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sin@ = ~[cos(l-2p)cosScosg; + singéinégl,
where ]ﬁ S and'}p,sp are the known celestial or ecliptic
coordinates of the asteroid and the unknown coordinates of the
asteroid's pole, respectively.

Unlike photometric astrometry (Taylor and Tedesco, 1983),
which takes advantage of the movement of the sub-Earth point
across lines of longitude on the asteroid to derive a pole
direction, the amplitude-magnitude-aspect relation, which takes
advantage of the movement of the sub-Earth point across lines of
latitude on the asteroid, is model-dependent in that it is a
function not only of the location of the pole but of the axial
ratios as well. Thus a non-linear least squares solution of
equation (1) for ab, ac, bc,).p, andgp, (or a, B, C,lp,‘andgp)
would result in finding simultaneously az/b2 = (A+B)/(A+C), bz/c2
= A/(A+B), and a2/c2 = A/ (A+C) and;lp,sp. A separate solution of
the numerator in (1), using V_(1,0) converted to intensity (the
magnitude-aspect relation), wquld yield only bz/c2 = A/(A+B) and
a pole position, if the amplitudes are not available, Thus two
separate determinations of bz/c2 and the pole are made with eq.
(1) and the magnitude-aspect method.

Another way of attacking the problem is to use a grid of
poles and axial ratios to find the combination that minimizes the
residuals between observed and predicted amplitudes and maximum
intensities. Our new method, however; uses a linear 1least
squares technique to find the axial ratios from a grid of
possible poles, thus eliminating the necessity of sampling a grid

of axial ratios., First, if only amplitudes are considered, then

11




by manipulating (1) we can form a linear amplitude aspect
relation

(R2-1)"1 = k + fran24 (2)
and solve for k and f for each trial pole where k = (A+C)/(B-C)
and £ = a/(B-C), and thus a2/b2 = (k+1)/k, b2/c? ={/(k+1), and
az/c2 = I/k. The pole and the resulting k and X that minimize
the residuals between "observed" and predicted (Rz--].)’l is chosen
as the best solution. The drawbacks to this method are that it
is a non-linear relation between the observable quantity R and
the independent variable 9, and that it gives more weight to
observations at higher Gh However, (2) is the simplest statement
of the amplitude-aspect relation.

If both V, and an amplitude for a given epoch are provided
then it is possible to convert the maximum and minimum iight to
intensities squared, x2 and Nz, respectively. Two linear
combinations of these quantities yield two equations to solve for
three unknowns. Adding and subtracting the numerator and
denominator in (1) yields

2 2

X“ + N = K + L cosze (3)

X - N

M cos?B (4)
A linear least squares solution of these equations for each trial
pole is made, and again the pole giving the lowest vector sum of

the residuals in (3) and (4) is chosen. The corresponding K, L,

and M give the axial-ratios:
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a‘ _ K+L+M _ A+B
p2 K+L-M  A+C

a2 = K = _A
2 K+L-M A+C

b2 __ K ___B_
2 K+L+M A+B

The advantage of this amplitude magnitude aspect method is
that a linear least squares estimate is made for the unknowns,
which yield axial ratios for the pole giving the lowest residuals
for all the available information simultaneously.

We now apply this new method (SAM) by selecting the seven
amplitudes in Table IV for Davida that have a corresponding Vo in
Table V, an accumulation of V(l1,w)'s by Zappala and Knezevic

(1985) and Vesely and Taylor (1985) from original sources

contained therein. But first, we use all the V(143 's in Table V

to construct the standard solar phase function plot of V(l,w) vs
(J, and show this as Figure (4). Using the eight points observed
at (W> 6.5 we f£ind V(1,0) = 6.445(1;4;,;;) + .040 (+.004) . Using
the opposition effect as formulated by Gehrels and Tedesco
(1979), we then calculate the RMS deviation from the solid line
in Figure (4) for all eleven points as #.035 mag. If we choose
the Lumme and ﬁowell (198la,b; Bowell and Lumme 1979) phase
function description, we derive m(0) = 6.132(+.063) and Q =
@.045(+.028) with an RMS scétter of 0.033 mag. Both methods
describe the data adeqguately but we will proceed in our analysis
by using the residuals from the Gehrels and Tedesco formulation.
Implicit in the standard phase plot, Figure (4), is that b/c

= 1, that the maximum area does not change with &, But let us

attribute the residuals in Figure 4 to differences in 6 at
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various oppositions, and convert each residual to an intensity.
Then using the seven residuals that have corresponding amplitudes
in Table IV we can derive seven (xz,Nz) pairs. The only data
that is excluded is the 1962 amplitude for which a Vo, was not
found; also, only one amplitude and V, from 1979 is chosen so as
not to bias the results toward one opposition. Next we construct
a grid of pole positions at 1° intervals in both ecliptic
longitude and latitude in the region of the poles found by
speckle and by Zappala and Knezevic (1985).

We find solutions for our SAM method (equations (3) and
(4)), and for the amplitude-aspect relation as given by (2).
Bevington (1969) suggests that when a non-linear equation is
transformed to a linear equation, the equations of condition

should be weighted. In our case (2) should be weighted by

AR T2,
7’2_1\] = (R™1)
This seems rather severe, so 1in
addition to finding the unweighted least squares solution to (2),
we also find two weighted solutions, one using the suggested
(Rz-l)4 as weights and one using (Rz-l)z. Table VI gives the
pole and axial ratios for the four methods, along with the errors
as found by a formal analysis of the propagation of the
uncertainties in the coefficients K, L, and M, or k and-j,

generated from the linear least squares routines. For instance

the error in the a/c ratio using (2) is
\/:
aq/c P) (}/’k> 3 -2 2 1y
T —— = dys = J5(%) j /ﬁ 2 13\
q < — C¥i . c 6, +4 o ,
c pLYAN Q(L%z) ( < £ h
The RMS error for the location of the pole arises from the

differences between the &'s calculated from the given pole and

14
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from inverting (2):

1\ 7 St - Ry, VR
6= fu,’ -———-——-————-""’(R ') 2 tan’ )’ Z 2 /" 7
/( K '/ i

!
-~

The RMS amplitudes (converted back to magnitude from intensities)

arises from comparing the observed amplitudes to a rearranged (1)

2 (0s"6 +5InE

Ro=

(o' 4 S1e &

<

® e c_r
' ~ P r)

Rounding out Table VI are the equivalent results from the

i

entirely independent method of speckle interferometry based on

the May 3, 1982 observations. Note that the 8° RMS error for the
speckle pole in Table VI is determined from photometric data,
whereas the 26° uncertainty in Table II derives from speckle
observations. | ?;TLY

In Table VII we show the solar phase functions for each of
the solutions in Table VI, using both the Gehrels and Tedesco
phase function and the Lumme and Bowell formulation, although the
residuals to the b/c = 1 phase function (Figure 4) were
determined from the Gehrels and Tedesco fit for input into the
SAM method. For the cases where b/c#l, the observed V(1,L,8)'s
were corrected to the polar view V(l,0y98°) using the appropriate
b/c and pole.

Of the photometric solutions for the pole and axial ratios
in Tables VI and V11, we prefer the results from the
simultaneous-amplitude-magnitude method because it uses both Vg,
and amplitudes simultaneously and is a simple combination of

linear equations. The vector sum of the RMS scatter in
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magnitudes from the predicted and observed amplitudes from Table
Vi, column 7, and from the predicted and observed Vv (1,#,6) from
.023 Ns+
Table VII, column 3, is 836 mag. fNeariy as good is the
amplitude-aspect relation (eq. 2) weighted by (R2_1)2’ which
gives a vector sum of RMS scatter of .637. The unweighted
amplitude-aspect method, and the amplitude-aspect method weighted
by (R2-1)4, give RMS scatters of .049 and .096 magnitudes,
respectively, and we do not consider them serious contenders for
wcdels of Davida. Figures S5 an s
corrected solar phase functions for the SAM results and for the
preferred weighted amplitude aspect method (WAA), respectively,
although the latter method uses only amplitudes as input and does

not use V, data at all.

Other salient points from this analysis of photometric data
are 1) Regardless of the method, the a/b ratio seems to be well
determined at 1.24. 2) The location of the pole is also well
determined and is not very sensitive to the method. 3) On the
other hand, the a/c and b/c ratios vary dramatically with the
location of the pole and the method of analysis. 4) The
uncertainties in the axial ratios increase with increased
weighting. 5) The Lumme-Bowell formulation of the phase function
appears to give slightly (but perhaps insignificantly) lower
residuals in the fits to the data than the Gehrels and Tedesco
method. 6) None of the axial ratios derived from photometry are

equilibrium figures.
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Combining Speckle and Photometry

One of the most useful applications of speckle and
photometric data is in the derivation of rather precise albedos,
especially for dark objects where the polarization slope-albedo

law saturates (Dollfus and Zellner 1979). For each of the fits

= Neocrd 3o L on Male T o4 T7T cvm £330 Llhhia £ ~vitvn vamivg vdomm etha 1T Aaaco
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change (in an RMS sense) in the speckle dimensions to meet th

(0]

axial ratios found from the photometry. These dimensions are
listed in Table VIII along with the uncertainties, where the
latter are calculated as the vector sum of the uncertainty in the
speckle dimension plus the difference between the speckle and
photometric dimension. Also listed in the table are the visual
albedos calculated with the V(1,8)'s and m(@)'s of Table VII
according to eq. (3) of Dollfus and Zellner (1979), where the
errors in the albedos follow from the propagation of the

uncertainties in a, b, and v(1,0) or m(@).
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Comparisons and Summaries

In one night, speckle interferometric observations yield a
triaxial ellipsoid figure for Davida, and two pole solutions. A
simple inspection of the lightcurve history of the asteroid
easily distinguishes between the two. The pole lies within 26°
of ecliptic coordinates (2910; +37°), and the axial ratios are
a/b = 1.30 + .17 and b/c = 1.39 + .32. This compares favorably
to Zappala and Knezevic's (1985) results from their amplitude-
magnitude-aspect (AM) method, which give a pole some 16° from
ours at (303°+4%; +34°#5°) or taking into account scattering, 12°
away at (302°+6°; +29°+6°). Their axial ratios also agree with
ours to within our errors: a/b = 1.26 and b/c = 1.18 (or 1.19
and 1.13 with scattering corrections).

We derive a new simultaneous amplitude-magnitude-aspect
(SAM) technique that for Davida yields a pole within 2?3 of
(3080; +30°), 16° away from the speckle pole, and axial ratios of
a/b = 1.24+.83, and b/c = 1.12+.083, both within the uncertainties
of the values found from speckle. If only amplitudes are
considered, then our version of a weighted amplitude-aspect
relation gives a pole at (311°; +329), with an uncertainty of
2?6. The axial ratios for this method are a/b = 1.24+.09 and b/c
= 1.24+.09.

Although Taylor (Vesely and Taylor, 1985) was not able to

achieve a totally satisfactory result with photometric astrometry
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of Davida, by considering only pairs of observations at the same
longitudes a pole within 22° of (285°9; +45°) was suggested, which
is only 9° from the speckle pole. Chang and Chang (1963), from
only four lightcurves, found a pole at (3060, + 34°) with an
early version of the amplitude-aspect relation, superseding the
one Gehrels and Owings (1962) found at (1229, +1¢°) from three
lightcurves.

The radiometric diameter of Davida is listed as 323 km by
Morrison and Zellner (1979) and 335 km by Bowell et al. (1979).
The mean diameter from speckle (abc)l/3 is 3580 + 28 km, from
speckle and SAM is 361 + 35 km, and from speckle and WAA is 359 +
30 km, all in reasonable agreement.

The albedo computed for the speckle dimensions is Py =
6.936 + .005, or from either of oﬁr favored photometric models p, = .033
+ .005 with the Gehrels and Tedesco phase function. With the
Lumme and Bowell phase relation p, is (G.G4lé.04%ﬁ?.Xﬁ66—.GG7).

While the photometric SAM and WAA results for the pole and
axial ratios are consistent with the results from speckle
interferometry, in the sense that they fall within the tolerances
of the speckle measurements, it is nevertheless tempting to try
to explain the 16-17° difference between the speckle and
photometric poles, and the differences between the axial ratios,
because the speckle shape implies an equilibrium figure and the
photometric ratios do not. (In this connection it should be
noted that although neither the SAM nor any of the amplitude-
aspect ratios are equilibrium figures, the mean of the two
weighted methods, A/A(Rz—l)2 and A/A(Rz—l)4 in Table VI, are very

close to the suggested equilibrium figure of 465x377x244.) It is

19



possible to reconcile the differences between the speckle and
photometric results by invoking an albedo structure over the
asteroid.

If the speckle rotational pole and axial ratios are
considered correct, then a photometric pole some 16-17° away from
the rotational pole implies that the brightest point on the
asteroid is off-axis and would lead to asymmetric lightcurves.
If the photometric ratios and pole are considered correct thén
the discrepancy in the speckle results is probably due to the
fact that they are based on only 5 ten-minute observations at one
aspect on one night, whereas the photometry was gathered over 28
years at various aspects. Between these two independent
solutions are many possible albedo structures that would bridge
the two results. For instance, with the speckle dimensions and
the photometric rotational pole, the albedo structures listed in
Table IX for both phase functions and each photometric method
would produce exactly the photometric history of Davida. Thus
for the SAM method, a 23% decrease in albedo from the view along
the a axis to the view from over the pole, and a decrease of 5%
from the view along the a axis to the view along the b axis,
would produce, with the speckle dimensions and photometric pole,
the same photometric behavior as would the SAM model in Tables
VI-VIII. For the WAA results a decrease of 15% and 4%,
respectively, would produce. the same photometric history as the
WAA model in Tables VI-VIII. While the photometric axial ratios
in Table VI do not allow an equilibrium figure, the speckle

dimensions, with or without the albedo structures given in Table
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IX, do, of course, lead to the equilibrium figure density of 1.4
gm/cm3.

With the photometric data available, then, there is no way
to choose_between a uniform albedo, non-equilibrium figure, and
an equilibrium figure with albedo gradients. However, we are
developing an image reconstruction program, which is the ideal

use of speckle interferometric data, and perhaps a successful

image reconstruction will shed light on the matter.
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TABLE I.

Aspect Data for Speckle Observations

Date RA Dec
3 May 1982 15h56m -2° 08!
Distance from Earth ' ' Distance from Sun
2.655 AU 3.604 AU
Solar Phase Angele Position Angle of Sun

centered on Davida

693 53°

25"
e




Yo

Pl

P2

465 + 33 km

358 + 39 km

258 + 52 km

_100

-400

285°

105°

+

|+

44°

28°

26°

26°

TABLE 1I.

Triaxial Solution

Pole 1

RA = 19h08M  Dec = +15°

Ecliptic Long = 291° Lat = +37°
Pole 2

RA = 12h40m Dec = -18°

Long = 196° Lat = -12°

The error radius around each pole

solution is 26°.




Yo

P1

P2

TABLE III.

Rejected Biaxial Solution

512 + 100 km Pole 1
334 + 39 km RA = 20M56M  Dec = +16°
Ecliptic Long = 322° Lat = +32°
-24° + 14°
Pole 2
-14° + 13°
RA = 10h52M pec = -17°
324° + 17°
Long = 171° Lat = -23°
144° + 17°

The error radius around each pole

solution is 16°.

5
BV



TABLE 1V.

Amplitudes
Speckle
Observed Predicted
Date A B Amplitude 81 Amplitude 0-C
Jan. 26, 1952 112 +3 0.06 +50 0.06 0.00
April 8, 1953 200 +22 .25 -12 «25 .00
Jan. 26, 1958 147 +12 .09 +30 .15 -.06
Dec. 5, 1962 63 -11 .12 +43 .09 .03
Dec. 30, 1968 100 -4 .07 +55 .05 .02
Mar. 21, 1970 195 +22 .22 -9 .27 -.05
Aug. 7, 1972 304 -7 .06 -44 .09 -.03
Dec. 6, 1979 52 -18 .18 +35 .13 .05
‘
|
|
|
|
28




TABLE V.

vV(1,w,0)

Date A 8 w V(1w 6 vffleflgo)
Jan. 26, 1952 112 +3 5.0 6.55 +50 6.43
April 8, 1953 200 422 6.6 6.72 -12 6.39
Jan. 26, 1958 147  +12 8.1 6.72 +30 6.48
Dec. 29/30, 1968 100 -4  1.65  6.35 +55 6.26
Mar. 21, 1970 195  +22 7.8 6.82 -9 6.48
Aug. 7, 1972 304 -1 3.6 6.48 -44 6.32
Oct. 31, 1979 60  -20 10.7 6.86 +43 6.70
Nov. 12, 1979 59  -20 7.9 6.73 +42 6.56
Dec. T, 1979 52 -18  10.0 6.83 +35 © 6.62
Dec. 17, 1979 51  -17 12.8 6.96 +34 6.74
Jan. 3, 1980 50 -14 17.2 7.13 +31 6.89
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Table IX

SAM
A/A (R2-1)2
A/A

A/A (R2-1)4

SAM
A/A (R%-1)2
A/A

A/A (R2-1)4

Orthogonal Albedos for Speckle Dimensions
and Photometric Pole

Gehrels and Tedesco

Lumme and Bowell

Pc

.038

.839
037

.045

29~
s

.838

Pp
.47
.044
.0954

.335

.949

.046

.056

.837



Figure Captions

Fig. 1. Measured major (¥X) and minor (B) axis dimensions (solid
and open dots, respectively) as a function of
rotational phase for 511 Davida on May 3, 1982. The
upper line is the least squares fit to the major axis
dimensions and the lower line in the simultaneous fit
to the minor axis dimensions. Maximum area (maximum
light) occurs at rotational phase 8° and 18¢°.

Fig. 2. Measured relative position angles (dots) of the major
axis and the simultaneous (along with the data in Figq.
1) 1least squares fit to the measured position angles
(¥) as a function of rotation on May 3, 1982. At
rotational phase @° and 18¢°, maximum area is reached,
and a is perpendicular to our line of sight, lying
unforeshortened in the plane of the Earth's sky. Note
that the position angle reverses direction near minimum
light at rotational phases -99° and 90°.

Fig. 3. Same as Fig. 2, but the latitude of the sub-Earth point
() has been changed by one degree. Unlike in Fig. 2,
for this aspect the asteroid would not appear to
reverse directions during rotation. The one degree
change in & resulté in a large change to the structure
of the residuals. See text.

Fig. 4. Standard (b assumed equal to c) solar phase plot of Vo
(from Table V) vs solar phase angle. The linear
portion of the Gehrels and Tedesco phase function is

calculated from the eight points observed at greater




than 6.5°. The intercept of this line is at V_(1,8) =
6.445, while the intercept for the Lumme and Bowell fit
is m(P) = 6.132, See Table VII.

Fig. 5. Solar phase function for the simultaneous-amplitude-
magnitude (SAM) aspect results given in Tables VI and
VII. Here the brightness Vv (1,1,8) is corrected.to V(1,2
/90), the view from above the pole. The Gehrels and
Tedesco phase function formulation is used and a line
is fit to the eight points observed at greater than
675.

Fig. 6. Same as Fig. 5, but for the weighted, by (Rz—l)z, linear
amplitude-aspect results, The line is a fit to the

seven points observed at greater than 7°.
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